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Hybrid solitary waves in quadratic nonlinear media

Antonio Picozzi and Marc Haelterman
Service d’Optique et d’Acoustique, Universite´ Libre de Bruxelles, 50 Avenue F.D. Roosevelt, Code Postal 194/5,

B-1050 Brussels, Belgium
~Received 30 October 1998!

Considering nondegenerate, backward quasi-phase-matched parametric interaction, we show that quadratic
media support two dimensional ‘‘hybrid’’ solitary waves. Their structure results from the combination of two
distinct mechanisms which, in isolation, are at the origin of the two classes of quadratic solitary waves
considered in nonlinear optics. In the transverse dimension the structure results from a balance between
diffraction and quadratic nonlinearity while the longitudinal structure results from net energy exchanges be-
tween the three interacting velocity-mismatched waves. The hybrid solitary waves can propagate at arbitrarily
small velocity, a feature that should make them easy to observe experimentally.@S1063-651X~99!05803-1#

PACS number~s!: 42.65.Tg, 42.65.Yj, 42.65.Re
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Nonlinear localized waves and solitons are ubiquitous
physics. They can be found in such diverse fields as hyd
dynamics, plasma physics, and nonlinear optics where
are grouped in numerous classes according to their origi
ing mechanism. In nonlinear optics two main classes of s
tary waves are distinguished that are of fundamentally
ferent nature. On the one hand, one finds solitary waves
arise from the interplay of nonlinearity and diffraction~or
dispersion in the temporal case!. These localized waves ar
well known in cubic nonlinear media where they can take
form of bright or dark solitons. They have been generaliz
to quadratic nonlinear media through the concept of param
ric solitary wave, for the bright@1# as well as for the dark
@2,3# structures. In view of their potential applications
all-optical switching, parametric solitary waves have
tracted growing attention in the last few years both fro
theoretical@4# and experimental view points@5#. The second
class of solitary waves of nonlinear optics gathers the s
tary waves that originate from energy exchanges betw
interacting waves of different velocities@6#. Their structure
is determined by an exact balance between the energy
change rates and the velocity mismatch between the inte
ing waves. This type of solitary wave also occurs in oth
branches of nonlinear science, such as plasma physics
drodynamics, or acoustics@7,8#. Several solitary waves o
this class, but with different originating mechanisms, ha
been extensively investigated in the field of nonlinear op
@9–11#. In particular, the similarity between three-wave i
teraction solitary waves and the self-induced transpare
soliton @12# governed by the sine-Gordon equation has b
established@8#. Besides this latter case, energy-exchan
induced solitary waves have been observed experimental
the context of stimulated Raman@10# and Brillouin@11# scat-
tering. In the particular case of backward interaction in q
dratic nonlinear media, their spontaneous formation has b
predicted in both the amplifier@13# and the cavity@14# con-
figurations.

We consider here the backward phase-matching confi
ration of the nondegenerate three-wave interaction in q
dratic media. We report, for the first time to our knowledg
on a hybrid solitary wave that arises from the combined
tion of two distinct mechanisms corresponding to the t
PRE 591063-651X/99/59~3!/3749~4!/$15.00
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classes of solitary waves in nonlinear optics. The hybrid s
tary wave is two dimensional. Its transverse structure res
from a balance between diffraction and nonlinearity~first
class! while its longitudinal structure is due to a net ener
exchange between the three interacting waves~second class!.
This longitudinal structure was recently shown to form
solitary-wave attractor in the backward configuration@13#.
The backward configuration was chosen because it con
robustness to the solitary wave especially as regards the
set of modulational instability. This is important in th
present context since the transverse structure of the hy
solitary wave is of the dark type that was shown to be alw
modulationally unstable in diffractive quadratic solita
waves@3,15,16#. Here, owing to the robustness of the hybr
solitary wave against modulational instability the dark tran
verse structure is stable .

We consider a quadratic material in which nondegene
parametric interaction takes place through backward qu
phase-matching so that one of the daughter waves~i.e., the
signal! counterpropagates with respect to the pump field. T
idea of the quasi-phase-matching technique is to modu
periodically the nonlinear susceptibility in order to introdu
an additional wave vector that compensates for the nat
phase mismatch between the counterpropagating fields@17#.
Under these conditions the slowly varying field envelopesAi
at frequencyv i and wave numberki , obey the coupled par
tial differential equations:

]A1

]t
2

]A1

]z
1m1A15A3A2* 1 ik1

]A1

]y2
, ~1a!

]A2

]t
1r 2

]A2

]z
1m2A25r2A3A1* 1 ik2

]A2

]y2
, ~1b!

]A3

]t
1r 3

]A3

]z
1m3A352r3A2A11 ik3

]A3

]y2
, ~1c!

with v35v21v1 and k35k21K2k1 , where K
52p/L, L being the spatial period of the grating. For de
niteness we callA1 ,A2 ,A3 the signal, idler, and pump
3749 ©1999 The American Physical Society
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3750 PRE 59BRIEF REPORTS
waves, respectively. For convenience, the field amplitud
the time t, the space coordinates (z,y), and the damping
ratesg i are normalized with respect to the pump amplitu
E0 at the input of the crystal and with respect to the pa
metric coupling coefficient s152pdv1 /l1n1 ~where
ni , v i , and d, respectively, are the refractive index, th
group velocity at frequencyv i , and the effective nonlinea
susceptibility!, i.e., Ai /E0→Ai ; ts1E0→t; (z,y)s1E0/v1
→(z,y); g i(s1E0)21→m i . In these units, the diffraction
coefficients arek i5v is1E0/2v1

2ki , while the nonlinear sus
ceptibility and group velocity parameters arer i5s i /s1 and
r i5v i /v1 ~i51,2!. From now on, we will assume for sim
plicity and without loss of generality thatr352r252 and
r 35r 251.

In a recent work we investigated Eqs.~1! in the pure
one-dimensional case (k i50) and found a family of solitary-
wave solutions@13# whose characteristic shape is represen
in Fig. 1. The solution is reached starting from any initia
localized profile of the signal envelope in the presence o
counterpropagating continuous pump. In order to investig
the existence of hybrid solitary waves, we introduced h
the transverse dimension through the diffraction terms
Eqs.~1! (k iÞ0). Noting the particular symmetry of Eqs.~1!
which are invariant under the transformation (A1 ,A2 ,A3)
→(2A1 ,2A2 ,A3), we can easily anticipate the existence
dark topological structure across the transverse profile of
solitary wave. Indeed, the sign indetermination ofA1 ,A2 in
Eqs.~1! should allow for the parametric growth of the sign
and idler modes with a phase difference ofp in two distinct
regions of the transverse space. Such a phase defect w
form a dark topological solitary wave if it could be stabilize
through a mutual compensation of diffraction and nonline
ity. Due to the nontrivial energy exchange mechanism t
forms the longitudinal solitary-wave structure in the count
propagating waves, this transverse stabilization mechan
is not obvious and should be checked numerically with gr
care.

In order to check the existence and spontaneous forma
of such a hybrid dark solitary wave, we consider here
numerical simulation of the backward amplification proce
of a signal field that exhibits ap-phase shift in its transvers
profile and that is localized in time. Note that since we a
looking for a solitary-wave structure induced by the ene
transfer from the pump to the signal and idler waves,
have to assume zero loss for the pump (m350). It is the

FIG. 1. Typical solitary-wave solution in the pure on
dimensional case. Parameters arek i50, m150.3, m250.35, m3
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only way to keep constant the energy transfer in order
generate stationary field structures. This approximation
usual for solitary waves that belong to the second class
will be discussed later.

Under these conditions we solve numerically Eqs.~1! ex-
tending to two dimensions the procedure outlined in R
@18#. A typical result is illustrated in Fig. 2 that shows th
spatial profile along the longitudinal and tranverse axis of
signal and pump waves in the signal reference frame defi
by (z5z1t,t5t). In this example the damping paramete
arem150.3,m250.35 and the diffraction parameters arek1
5k251023,k350.531023. As the initial condition in t
50, we took a plane waveA3(z,y,t50)51 for the pump.
For the signal we considered a transverse dark pro
bounded along the longitudinalz axis A1(z,y,t50)
}etanh@D(y2L/2)#z(L2z), wheree, D are constants,L is
the size of the numerical window, and for the idler a ze
field A2(z,y,t50)50. After a complex transient (t,10) the
three interacting fields self-structurate in the form of the a
ticipated hybrid solitary wave (t.30). The same solution is
reached starting from any signal envelope, provided tha
exhibits a transversep-phase shift. This allows us to con
sider the hybrid solitary wave as a strong attractor solution
the system.

We plot in Fig. 3 the longitudinal and transverse profil
of the hybrid solitary wave. As expected, the tw
dimensional structure is hybrid in the sense that, on the
hand, it is localized in the transverse dimension as a d

FIG. 2. Hybrid solitary-wave generation: evolution of spat
amplitudes profiles of the signal~a! and pump~b! envelopes@along
the longitudinal~z! and transverse~y! axis# in the signal reference
frame defined by (z5z1t,t5t) ~amplitudes are given in units o
E0).
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structure of the first class where diffraction is balanced
the nonlinear coupling. On the other hand, its longitudi
profile is localized in the form of a solitary wave reminisce
of the second class. Because of its topological nature,
transverse structure is robust and survives all along the t
sient and asymptotic dynamics. Far from the phase de
line located iny50, the signal and idler envelopes tend
the profile of the longitudinal solitary wave in the absence
diffraction @this is clearly evidenced by comparing Fig. 2~a!
and Fig. 1#. Note that the pump wave is not of the dark ty
in the transverse dimension, in contrast with the signal
idler modes@Figs. 3~c! and 3~d!#. In this respect, the trans
verse dark structure of the hybrid solitary wave shares
properties of the spatial topological phase defect found
degenerate optical parametric oscillators@19#. In particular,
as in the optical parametric oscillator, the pump envelope
the form of a hump sitting on a constant background is
plained by the local frustration of the frequency convers
process due to the zero value of the signal and idler inte
ties imposed by the phase defect.

The hybrid solitary wave proved to be robust with resp
to modulational instabilities. In all our numerical simulatio
we could not identify any growing modes that might be
sponsible for modulational instability. This result contra
with the previously reported quadratic spatial dark solita
wave that was shown to be always modulationally unsta
@3#. Let us emphasize that the robustness of the hybrid s
tary wave is intimately related to the backward configurat
of the parametric interaction considered here. Indeed, du
large wave velocity differences, the backward interaction
responsible for a strong localization of the signal and id
components along the longitudinal axis@20,14#. Under this
condition, a given point of the pump carrier wave only inte
act with the daughter waves over a very short time~of the
order of the pulse duration!, which prevents the onset of th
modulational instability.

Let us remark that the hybrid solitary wave does n
propagate with the velocity of light in the quadratic mater
but rather with a specific subluminous velocity. This is v
ible in Fig. 2 where we see that the steady-state~i.e., for t
.30) structure drifts uniformly to the right in the sign
reference frame. This is not surprising since we have sho
in the one-dimensional case (k i50) that the solitary waves

FIG. 3. Typicals longitudinal (a: y51; b: y57.5) and trans-
verse (c: z55; d: z56) profiles of the hybrid solitary wave in
its asymptotic regime (t530).
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propagate with a selected subluminous velocity@13#. The
two-dimensional hybrid solitary wave considered here can
viewed as being formed by the coupling through diffracti
of a continuous set of longitudinal structures. The import
point is that, because of the phase defect, these longitud
solitary waves obviously have different amplitudes as e
denced in Figs. 3~a! and 3~b!. As the selected velocity de
pends on the amplitude of the solitary wave, one could h
expected that this nonuniform amplitude distribution resu
in a certain distribution of the velocities of the longitudin
solitary waves that would have therefore led to a glo
spreading of the two-dimensional structure. The remarka
and unexpected result is that diffraction coupling locks
gether all the longitudinal solitary waves of different amp
tudes and gives rise to the hybrid solitary wave that pro
gates with a peculiar subluminous velocity.

To determine the selected velocity, sayVz* , remark that
in the regions far from the phase defect, the wavefron
completely flat and diffraction plays no role. The longitud
nal profile of the hybrid solitary wave in these regions th
takes the same shape as that of the pure one-dimens
structure. Therefore, by virtue of the stationarity of the tw
dimensional structure, the selected velocity of the hyb
solitary wave is determined by the velocity of the pure on
dimensional one. This velocity has been determined ana
cally in Ref. @13# following the Kolmogorov-Petrovskii-
Piskunov conjecture@21# and reads

Vz* 5
m2

22m1
214A12m1m2

41~m12m2!2
. ~2!

We checked by numerical simulation the validity of this th
oretical prediction. We found a discrepancy (Vz,theor*
2Vz,num* )/Vz,num* between the numerical and theoretical va
ues ofVz* less than 0.1%.

In order to clarify the experimental conditions require
for the observation of hybrid solitary waves, let us note th
according to Eq.~2!, their velocity Vz* can be arbitrarily
small and even 0. Due to the short typical lengths of av
able quadratic crystals, the generation of solitary waves
the second class in copropagating phase-matching config
tion is not feasible because it requires prohibitive pump po
ers. Conversely, on the backward configuration, arbitra
small velocities are possible which makes the hybrid solit
waves observable with relatively low pump intensities. Th
simply because the time spent in the crystal can be m
sufficiently long to allow transient dynamics and comple
buildup of the fields to take place within the crystal leng
According to Eq.~2!, we haveVz* 50 when the pump am-
plitude E0 is chosen such thatm11m25(g11g2)/s1E0
52. Moreover, for this particular case of zero velocity, w
may expect to generate the stationary hybrid solitary wav
the presence of pump loss (m3Þ0). Indeed in this case, th
energy transfer from the pump to the signal and idler wa
remains constant since the signal and idler envelopes do
move with respect to the exponential pump profile. For no
zero velocity in the case of nonzero pump loss, the solit
wave has to adapt its shape to each value of the pump
plitude and is therefore no longer stationary.
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FIG. 4. Signal and pump amplitudes profiles of the zero-velocity hybrid solitary wave~amplitudes are given in units ofE0).
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We simulated Eqs.~1! with the following diffraction pa-
rametersk15k25231022, k351022 and the damping pa
rametersg1512 cm21, g253 cm21, g350.5 cm21 that
corresponds to a pump intensityI 530 MW/cm2 launched in
a crystal of lengthL57 cm with an effective nonlinear co
efficient of d550 pm/V. The simulation has been pe
formed in the laboratory reference frame starting from
same initial conditions as in Fig. 1. After a complex transie
the three interacting fields self-structurate in the form o
zero-velocity hybrid solitary wave whose asymptotic sign
and pump envelopes are represented in Fig. 4. Owing to
zero velocity, we have been able to pursue the numer
integration over very long times. In the example of Fig.
t52000 corresponds in dimensional units to 20 ns. Care
checks of the numerical simulations allow us to conclu
that the hybrid solitary wave is rigorously stationary a
robust against modulational instabilities.

Let us note that a bright counterpart of the dark hyb
solitary wave presented here cannot be expected contra
what is found in the well-known purely diffractive solitar
waves, Refs.@2–4#. Indeed, a transversely limited pum
beam cannot see its own diffraction compensated by the n
v.

tu
e
t
a
l
its
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,
ul
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n-

linearity all along its propagation since interaction with t
signal and idler waves only takes place over a small reg
of the longitudinal axis.

In summary, we showed that backward nondegene
parametric interaction in quadratic media sustains a new t
of two-dimensional hybrid solitary waves. The structure
these new nonlinear waves results from the interplay of
two mechanisms that are at the origin of two classes of q
dratic solitary waves that were up to now considered se
rately in nonlinear optics. These mechanisms are, on the
hand, the balance between diffraction and nonlinearity t
leads to a dark solitary-wave structure in the transverse
mension and, on the other hand, a net energy exchange
tween the interacting velocity-mismatched waves wh
leads to longitudinal confinement. Our numerical simulatio
show that the dark hybrid solitary waves are stable aga
modulational instability contrary to their purely diffractiv
counterpart. Moreover, the hybrid solitary waves can have
arbitrarily small velocity, which makes them observable e
perimentally in quadratic crystals of practical lengths. T
experimental observation of this hybrid solitary structu
would be of great interest for the fundamental study of sp
taneous localization phenomena in nonlinear optics.
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